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Abstract

The construction of unitary operator bases in a finite-dimensional Hilbert space
is reviewed through a nonstandard approach combining angular momentum
theory and representation theory of SU(2). A single formula for the bases is
obtained from a polar decomposition of SU(2) and is analyzed in terms of cyclic
groups, quadratic Fourier transforms, Hadamard matrices and generalized
Gauss sums. Weyl pairs, generalized Pauli operators and their application
to the unitary group and the Pauli group naturally arise in this approach.

PACS numbers: 03.65.Fd, 03.65.Ta, 03.65.Ud, 02.20.Qs

1. Introduction

Angular momentum theory [1] and its group-theoretical formulation in terms of the Wigner–
Racah algebra of SU(2) [2–4] (see also [5] for an extension to a finite or compact group) are
of central importance in subatomic, atomic, molecular and condensed matter physics. The
components of any angular momentum (spin, isopin, orbital angular momentum, etc) generate
the Lie algebra of the group SU(2). Therefore, SU(2) and its noncompact extension SU(1, 1)

are basic ingredients for dealing with generalized angular momenta. Chains of groups ending
with SO(3) � SU(2)/Z2(+) or SO(3) ⊂ SO(2) are of interest in subatomic and atomic
physics. In this direction, one can mention the group SU(3) ⊗ SU(2) ⊗ U(1) (related to
the chain U(3) ⊂ SU(2) ⊗ U(1) ⊂ U(1)) and its grand unified and/or supersymmetric
extensions for describing elementary particles and their (strong and electroweak) interactions
[6]. Furthermore, one knows the relevance in atomic physics of the chain U(7) ⊂ SO(7) ⊂
G2 ⊂ SO(3) ⊂ SO(2) for the electronic spectroscopy of f N ions [3]. On the other side,
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chains ending with SU(2) ⊂ G, where G is a finite group (or a chain involving finite
groups), proved to be of considerable interest in molecular and condensed matter spectroscopy
[7–9]. Recently, chains of type SU(2) ⊂ G have also been used in attempts to understand the
flavor structure of quarks and leptons [10]. The groups SU(2) and SU(1, 1) as well as their
q- or qp-deformations in the sense of Hopf algebras (see for instance [11, 12]), thus play a
pivotal role in many areas of physical sciences.

The representation theory of SU(2) is generally addressed in two different ways. The
standard one amounts to diagonalizing the complete set {j 2, jz} involving the Casimir operator
j 2 and one generator jz of SU(2). Another way is to consider a set {j 2, v}, where v is an
operator defined in the enveloping algebra of SU(2) and invariant under a subgroup of SU(2).
A third way (not very well known) consists in diagonalizing a complete set {j 2, vra}, where vra

stands for a two-parameter operator which commutes with j 2 and is a pseudoinvariant under
a cyclic group [13].

The aim of this review is to show that the third approach to the representation theory of
SU(2) opens a window on the apparently disconnected subjects enumerated in the title.

This review is organized as follows. The minimal requirements for a {j 2, vra} approach
to SU(2) (i.e., a nonstandard approach to angular momentum theory) are given in section 2
and in two appendices. Section 3 deals with quadratic sums (in relation with quadratic discrete
Fourier transforms, generalized Hadamard matrices, generalized quadratic Gauss sums and
mutually unbiased bases), and section 4 is devoted to unitary groups and Pauli groups.

This review is dedicated to the memory of the late Professor Yurii Fedorovich Smirnov
who contributed to many domains of mathematical physics (e.g., Lie groups and Lie algebras,
quantum groups, special functions) and theoretical physics (e.g., nuclear, atomic and molecular
physics, crystal- and ligand-field theory).

A few words about some of the notations are in order. The bar indicates complex
conjugation. The symbol δa,b stands for the Kronecker symbol of a and b. We use I and Id to
denote the identity operator and the d-dimensional unity matrix, respectively. The operator A†

stands for the adjoint of the operator A. We note as [A,B]− and [A,B]+ the commutator and
the anticommutator of the operators A and B, respectively. We use the Dirac notation |ψ〉 for
a vector in a Hilbert space; furthermore, 〈φ|ψ〉 and |φ〉〈ψ | are respectively the inner product
and the outer product of the vectors |ψ〉 and |φ〉. The symbols ⊕ and � stand respectively
for the addition and subtraction modulo d while ⊗ and 	 are used respectively for the direct
product of vectors or operators and the direct sum of vector spaces. The matrices of type Eλ,μ

with the matrix elements

(Eλ,μ)λ′,μ′ := δλ,λ′δμ,μ′ (1)

stand for generators of the Lie group GL(d, C). For a and b coprime, we take(
a

b

)
L

:=
{

+1 if a = k2 mod(b)

−1 if a �= k2 mod(b)
(2)

to denote the Legendre symbol of a and b (equal to 1 if a is a quadratic residu modulo b and
−1 if a is not a quadratic residu modulo b). In addition, the integer inverse (a\b) of a with
respect to b is given by

a(a\b) = 1 mod(b). (3)

Finally, the q-deformed number [n]q and the q-deformed factorial [n]q!, with n ∈ N, are
defined by

[n]q := 1 − qn

1 − q
(4)
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and

[n]q! := [1]q [2]q . . . [n]q [0]q! := 1, (5)

where q is taken is this review as a primitive root of unity.

2. A nonstandard approach to su(2)

In some previous works [13], we developed a nonstandard approach to the Lie algebra
su(2) and studied the corresponding Wigner–Racah algebra of the group SU(2). This
nonstandard approach is based on a polar decomposition of su(2), based in turn on a truncated
oscillator algebra (see appendices A and B). It yields nonstandard bases for the irreducible
representations of SU(2) and new Clebsch–Gordan coefficients for the angular momentum
theory. Basically, the approach amounts to replacing the set {j 2, jz}, familiar in quantum
mechanics, by a set {j 2, vra} (j 2 and jz are the Casimir operator and the Cartan generator of
su(2), respectively).

The operator vra acts on the (2j + 1)-dimensional subspace E(2j + 1), associated with the
angular momentum j , of the representation space of SU(2). We define it here by

vra := ei2πjr |j,−j 〉〈j, j | +
j−1∑

m=−j

q(j−m)a|j,m + 1〉〈j,m|, (6)

where

q := exp

(
2π i

2j + 1

)
2j ∈ N r ∈ R a ∈ Z2j+1 (7)

and, for fixed j , the vectors |j,m〉 (with m = j, j−1, . . . ,−j ) satisfy the eigenvalue equations

j 2|j,m〉 = j (j + 1)|j,m〉 jz|j,m〉 = m|j,m〉 (8)

familiar in angular momentum theory. The vectors |j,m〉 span the Hilbert space E(2j + 1) ∼
C2j+1 and are taken in an orthonormalized form with

〈j,m|j,m′〉 = δm,m′ . (9)

Obviously, the operator vra is unitary and commutes with j 2. The spectrum of the set {j 2, vra}
is described by

Result 1. For fixed j , r and a, the 2j + 1 vectors

|jα; ra〉 := 1√
2j + 1

j∑
m=−j

q(j+m)(j−m+1)a/2−jmr+(j+m)α|j,m〉 (10)

with α = 0, 1, . . . , 2j , are common eigenvectors of vra and j 2. The eigenvalues of vra and j 2

are given by

vra|jα; ra〉 = qj(a+r)−α|jα; ra〉 j 2|jα; ra〉 = j (j + 1)|jα; ra〉 α = 0, 1, . . . , 2j. (11)

The spectrum of vra is nondegenerate.

The set {|jα; ra〉 : α = 0, 1, . . . , 2j} constitutes another orthonormal basis, besides the
basis {|j,m〉 : m = j, j − 1, . . . ,−j}, of E(2j + 1) in view of

〈jα; ra|jβ; ra〉 = δα,β . (12)

Note that the value of 〈jα; ra|jβ; sb〉 is much more involved for r �= s and a �= b and needs
the calculation of Gauss sums as we shall see below.
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The Wigner–Racah algebra of SU(2) can be developed in the {j 2, vra} scheme. This
leads to Clebsch–Gordan coefficients and (3 – jα)ra symbols with properties very different
from those of the usual SU(2) ⊂ U(1) Clebsch–Gordan coefficients and 3 – jm symbols
corresponding to the {j 2, jz} scheme [13].

The nonstandard approach to angular momentum theory briefly summarized above is
especially useful in quantum chemistry for problems involving cyclic symmetry. This is
the case for a ring-shape molecule with 2j + 1 atoms at the vertices of a regular polygon
with 2j + 1 sides or for a one-dimensional chain of 2j + 1 spins ( 1

2 -spin each) [14]. In
this connection, we observe that the vectors of type |jα; ra〉 are specific symmetry-adapted
vectors [15, 16]. Symmetry-adapted vectors are widely used in quantum chemistry, molecular
physics and condensed matter physics as for instance in rotational spectroscopy of molecules
[17] and ligand-field theory [18]. However, the vectors |jα; ra〉 differ from the symmetry-
adapted vectors considered in [19–22] in the sense that vra is not an invariant under some
finite subgroup (of crystallographic interest) of the orthogonal group O(3). Indeed, vra is
a pseudoinvariant [23] under the Wigner operator PR(ϕ) associated with the rotation R(ϕ),
around the quantization axis Oz, with the angle

ϕ := p
2π

2j + 1
p = 0, 1, . . . , 2j (13)

since

PR(ϕ)vraP
†
R(ϕ) = e−iϕvra. (14)

More precisely, we have

Result 2. The operator vra transforms according to an irreducible representation of the cyclic
subgroup C2j+1 ∼ Z2j+1(+) of the special orthogonal group SO(3). In terms of vectors, one
has

PR(ϕ)|jα; ra〉 = qjp|jβ; ra〉 β := α � p (15)

so that the set {|jα; ra〉 : α = 0, 1, . . . , 2j} is stable under PR(ϕ). The latter set spans the
regular representation of C2j+1.

3. Variations on quadratic sums

3.1. Quadratic discrete Fourier transform

We leave the domain of angular momentum theory and adopt the following notations:

d := 2j + 1 k := j − m |k〉 := |j,m〉. (16)

These notations are particularly adapted to quantum information and quantum computation.
In these new notations, we have

vra = eiπ(d−1)r |d − 1〉〈0| +
d−1∑
k=1

qka|k − 1〉〈k|. (17)

From now on, we assume that d � 2 and r = 0 (the case d = 1 and r �= 0, although of interest
in the theory of angular momentum, is not essential for what follows). In addition, we put

|aα〉 := |jα; 0a〉 (18)

with a and α in the ring Zd := Z/dZ. Then, equation (11) gives

v0a|aα〉 = q(d−1)a/2−α|aα〉 (19)
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with

|aα〉 = 1√
d

d−1∑
k=0

q(k+1)(d−k−1)a/2−(k+1)α|k〉. (20)

Equation (20) can be rewritten as

|aα〉 =
d−1∑
k=0

(Fa)kα |k〉, (21)

where

(Fa)kα := 1√
d

q(k+1)(d−k−1)a/2−(k+1)α (22)

is the kαth matrix element of a d × d matrix Fa (the matrix Fa can be seen as the matrix
associated with the character table of the cyclic group Cd pre- and post-multiplied by diagonal
matrices).

Equations (21) and (22) define a quadratic quantum Fourier transform. The matrix Fa is
unitary so that (21) can be inverted to give

|k〉 =
d−1∑
α=0

(Fa)kα|aα〉 (23)

or

|k〉 = 1√
d

d−1∑
α=0

q−(k+1)(d−k−1)a/2+(k+1)α|aα〉. (24)

In the special case a = 0, we have

|0α〉 = q−α 1√
d

d−1∑
k=0

e− 2π i
d

αk|k〉 ⇔ |k〉 = 1√
d

d−1∑
α=0

e
2π i
d

(k+1)α|0α〉. (25)

Consequently, the quadratic quantum Fourier transform reduces to the ordinary quantum
Fourier transform (up to a phase factor). The corresponding matrix F0 satisfies

F 4
0 = qId (26)

to be compared to the well-known relation F 4 = Id for the standard quantum Fourier transform
[24].

At this stage, we foresee that d +1 (orthonormal) bases of the space E(d) play an important
role in this review: (i) the basis

Bd := {|j,m〉 : m = j, j − 1, . . . ,−j} ⇔ Bd := {|k〉 : k = 0, 1, . . . , d − 1} (27)

associated with the {j 2, jz} scheme, known as the spherical or canonical basis in the theory
of angular momentum, and as the computational basis in quantum information and quantum
computation and (ii) the d bases

Ba := {|aα〉 : α = 0, 1, . . . , d − 1} a = 0, 1, . . . , d − 1 (28)

(noted B0a in [25]) associated with the {j 2, v0a} scheme.
To close this subsection, let us show how the preceding developments can be used for

defining a quadratic discrete Fourier transform. We start from the formal transformation

x := {x(k) ∈ C : k = 0, 1, . . . , d − 1} → y := {y(α) ∈ C : α = 0, 1, . . . , d − 1} (29)

5
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defined via

y(α) := 1√
d

d−1∑
k=0

q(k+1)(d−k−1)a/2−(k+1)αx(k), (30)

where a can take any of the values 0, 1, . . . , d − 1. Alternatively, for fixed a we have

y(α) =
d−1∑
k=0

(Fa)kαx(k) α = 0, 1, . . . , d − 1. (31)

The inverse transformation y → x is described by

x(k) =
d−1∑
α=0

(Fa)kαy(α) k = 0, 1, . . . , d − 1. (32)

The bijective transformation x ↔ y can be thought of as a quadratic discrete Fourier
transform. The case a = 0 corresponds to the ordinary discrete Fourier transform (up to a phase
factor). These matters lead to the following result which generalizes the Parseval–Plancherel
theorem for the ordinary discrete Fourier transform.

Result 3. The quadratic discrete Fourier transforms x ↔ y and x ′ ↔ y ′ associated with the
same matrix Fa, a ∈ Zd , satisfy the conservation rule

d−1∑
α=0

y(α)y ′(α) =
d−1∑
k=0

x(k)x ′(k), (33)

where the common value is independent of a.

3.2. Generalized Hadamard matrices

The modulus of each matrix element of Fa (with a ∈ Zd ) is equal to 1/
√

d. Therefore, the
unitary matrix Fa turns out to be a generalized Hadamard matrix. We adopt here the following
definition. A d × d generalized Hadamard matrix is a unitary matrix whose each entry has a
modulus equal to 1/

√
d [26]. Note that the latter normalization, used in quantum information

[27, 28], differs from the usual one according to which a d × d generalized Hadamard matrix
H is a complex matrix such that H †H = dId and for which the modulus of each element is 1
[29]. In this respect, the generalized Hadamard matrix Ha considered in [14] corresponds to√

dFa up to permutations.

Example 1. By way of illustration, from (22) we get the familiar Hadamard matrices

F0 = 1√
2

(
1 −1
1 1

)
F1 = 1√

2

(
i −i
1 1

)
(34)

for d = 2 and

F0 = 1√
3

⎛
⎝1 ω2 ω

1 ω ω2

1 1 1

⎞
⎠ F1 = 1√

3

⎛
⎝ω 1 ω2

ω ω2 1
1 1 1

⎞
⎠ F2 = 1√

3

⎛
⎝ω2 ω 1

ω2 1 ω

1 1 1

⎞
⎠ (35)

(with ω := ei2π/3) for d = 3. Another example is

F0 = 1√
6

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 τ τ 2 −1 −τ −τ 2

1 τ 2 −τ 1 τ 2 −τ

1 −1 1 −1 1 −1
1 −τ τ 2 1 −τ τ 2

1 −τ 2 −τ −1 τ 2 τ

1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(36)

(with τ := e−iπ/3) which readily follows from (22) for d = 6 and a = 0.
6
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We sum up and complete this section with the following result (see also [14, 30]).

Result 4. The matrix

Fa = 1√
d

d−1∑
k=0

d−1∑
α=0

q(k+1)(d−k−1)a/2−(k+1)αEk,α (37)

associated with the quadratic quantum Fourier transform (21) is a d×d generalized Hadamard
matrix. It reduces the endomorphism associated with the operator v0a:

F †
aV0aFa = q(d−1)a/2

d−1∑
α=0

q−αEα,α = q(d−1)a/2

⎛
⎜⎜⎜⎝

1 0 . . . 0
0 q−1 . . . 0
...

... . . .
...

0 0 . . . q−(d−1)

⎞
⎟⎟⎟⎠ , (38)

where the matrix

V0a :=
d−1∑
k=0

qkaEk�1,k =

⎛
⎜⎜⎜⎜⎜⎝

0 qa 0 . . . 0
0 0 q2a . . . 0
...

...
... . . .

...

0 0 0 . . . q(d−1)a

1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

(39)

represents the linear operator v0a on the basis Bd.

3.3. Generalized quadratic Gauss sums

The Hadamard matrices Fa and Fb (a, b ∈ Zd ) are connected to the inner product 〈aα|bβ〉. In
fact, we have

〈aα|bβ〉 = (
F †

aFb

)
αβ

. (40)

A direct calculation yields

〈aα|bβ〉 = 1

d

d−1∑
k=0

qk(d−k)(b−a)/2−k(β−α) (41)

or

〈aα|bβ〉 = 1

d

d−1∑
k=0

eiπ{(a−b)k2+[d(b−a)+2(α−β)]k}/d . (42)

Hence, each matrix element of F
†
aFb can be put in the form of a generalized quadratic Gauss

sum S(u, v,w) defined by [31]

S(u, v,w) :=
|w|−1∑
k=0

eiπ(uk2+vk)/w, (43)

where u, v and w are integers such that u and w are mutually prime, uw �= 0 and uw + v is
even. In detail, we obtain

〈aα|bβ〉 = (
F †

aFb

)
αβ

= 1

d
S(u, v,w) (44)

7
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with the parameters

u = a − b v = −(a − b)d + 2(α − β) w = d (45)

which ensure that uw + v is necessarily even.
In the particular case d = 2 (of special interest for qubits), we directly get

〈aα|bβ〉 = 1
2 [1 + eiπ(b−a+2α−2β)/2] (46)

which reduces to

〈aα|aβ〉 = δα,β b = a (47)

and

〈aα|bβ〉 = 1
2 (1 ± i) b �= a, (48)

where the + sign corresponds to b−a + 2(α−β) = 1,−3 and the −sign to b−a + 2(α−β) =
−1, 3.

In the general case d arbitrary (of interest for qudits), the calculation of S(u, v,w) can be
achieved by using the methods described in [31] (see also [32–35]). The cases of interest for
what follows are (u even, v even, w odd), (u odd, v odd, w odd) and (u odd, v even, w even).
This leads to

Result 5. For a �= b, d arbitrary and u + v + w odd, the inner product 〈aα|bβ〉 and the αβth
element of the matrix F

†
aFb follow from

case u = a − b even, v = d(b − a) + 2(α − β) even, w = d odd:

〈aα|bβ〉 = (
F †

aFb

)
αβ

=
√

1

w

(
u

w

)
L

exp
(
−i

π

4

[
w − 1 +

u

w
(u\w)2v2

])
(49)

case u = a − b odd, v = d(b − a) + 2(α − β) odd, w = d odd:

〈aα|bβ〉 = (
F †

aFb

)
αβ

=
√

1

w

(
u

w

)
L

exp
(
−i

π

4

[
w − 1 + 16

u

w
(4u\w)2v2

])
(50)

case u = a − b odd, v = d(b − a) + 2(α − β) even, w = d even:

〈aα|bβ〉 = (
F †

aFb

)
αβ

=
√

1

w

(
w

u

)
L

exp

(
−i

π

4
u

[
−1 +

1

w
(u\w)2v2

])
(51)

so that the matrix F
†
aFb is a Hadamard matrix for each case under consideration.

Finally, for a = b and d arbitrary we recover the orthonormality property (see (12))

〈aα|aβ〉 = δα,β (52)

from a direct calculation of the right-hand side of (42).

3.4. Mutually unbiased bases

Speaking generally, two d-dimensional bases Ba = {|aα〉 : α ∈ Zd} and Bb = {|bβ〉 : β ∈ Zd}
are said to be mutually unbiased if and only if

|〈aα|bβ〉| = δa,bδα,β + (1 − δa,b)
1√
d

(53)

for any α and β in the ring Zd . It is well known that the number of mutually unbiased
bases (MUBs) in the Hilbert space Cd cannot be greater than d + 1 [36–39]. In fact, the
maximum number d + 1 is attained when d is the power of a prime number [38, 39]. Despite

8
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a considerable amount of work, the maximum number of MUBs is unknown when d is not a
power of a prime. In this respect, several numerical studies strongly suggest that there are only
three MUBs for d = 6 (see for example [27, 28, 40–42]). MUBs are closely connected with
the concept of complementarity in quantum mechanics. These are of paramount importance
in classical information theory (Kerdock codes and network communication protocols)
[39, 43], in quantum information theory (quantum cryptography and quantum state
tomography) [44] and in the solution of the Mean King’s problem [45–50]. Recently, it
has been pointed out and confirmed that MUBs are also of central importance in the formalism
of Feynman path integrals [51, 52]. Finally, it should be emphasized that the concept of MUBs
also exists in infinite dimension [53]. There are numerous ways of constructing sets of MUBs.
Most of them are based on discrete Fourier analysis over Galois fields and Galois rings,
discrete Wigner functions, generalized Pauli matrices, mutually orthogonal Latin squares,
finite geometry methods and Lie-like approaches (see [14, 25, 27, 28, 30, 36–50, 54–64] for
an nonexhaustive list of references).

3.4.1. Case d prime. We have the following important result. (See also [64] for a recent
alternative group-theoretical approach to the case d prime.)

Result 6. In the case where d = p is a prime number (even or odd), one has

|〈aα|bβ〉| = ∣∣(F †
aFb

)
αβ

∣∣ = 1√
p

a �= b (54)

for a, b, α, β ∈ Zp. Therefore, the p + 1 bases B0, B1, . . . , Bp constitute a complete set of
MUBs in Cp.

The proof easily follows from the calculation of the modulus of S(a − b, pb − pa +
2α − 2β, p) from (46), (49)–(51). As a consequence, the bases Ba, with a = 0, 1, . . . , p − 1,
are p MUBs in the sense that they satisfy (53) for any a, b, α and β in the Galois field Fp.
Obviously, each of the bases Ba (with a = 0, 1, . . . , p − 1) is mutually unbiased with the
computational basis Bp. This completes the proof. Note that result 6 can be proved as well
from the developments in [14].

As two typical examples, let us examine the cases d = 2 and 3.

Example 2. Case d = 2. In this case, relevant for a spin j = 1/2 or for a qubit, we have
q = −1 and a, α ∈ Z2. The matrices of the operators v0a are

V00 =
(

0 1
1 0

)
V01 =

(
0 −1
1 0

)
. (55)

By using the notation

α := ∣∣ 1
2 , 1

2

〉
β := ∣∣ 1

2 ,− 1
2

〉
(56)

familiar in quantum chemistry (α is a spinorbital for spin up and β for spin down), the d +1 = 3
MUBs are

B0 : |00〉 = 1√
2
(α + β) |01〉 = − 1√

2
(α − β) (57)

B1 : |10〉 = i 1√
2
(α − iβ) |11〉 = −i 1√

2
(α + iβ) (58)

B2 : |0〉 = α |1〉 = β. (59)

9
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Example 3. Case d = 3. This case corresponds to a spin j = 1 or to a qutrit. Here, we have
q = exp(i2π/3) and a, α ∈ Z3. The matrices of the operators v0a are

V00 =
⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ V01 =

⎛
⎝0 q 0

0 0 q2

1 0 0

⎞
⎠ V02 =

⎛
⎝0 q2 0

0 0 q

1 0 0

⎞
⎠ . (60)

The d + 1 = 4 MUBs read

B0 :|00〉 = 1√
3
(|0〉 + |1〉 + |2〉)

|01〉 = 1√
3
(q2|0〉 + q|1〉 + |2〉)

|02〉 = 1√
3
(q|0〉 + q2|1〉 + |2〉)

(61)

B1 :|10〉 = 1√
3
(q|0〉 + q|1〉 + |2〉)

|11〉 = 1√
3
(|0〉 + q2|1〉 + |2〉)

|12〉 = 1√
3
(q2|0〉 + |1〉 + |2〉)

(62)

B2 :|20〉 = 1√
3
(q2|0〉 + q2|1〉 + |2〉)

|21〉 = 1√
3
(q|0〉 + |1〉 + |2〉)

|22〉 = 1√
3
(|0〉 + q|1〉 + |2〉)

(63)

B3 : |0〉 = |1, 1〉 |1〉 = |1, 0〉 |2〉 = |1,−1〉. (64)

It should be observed that B0 (respectively, B1 and B2) can be associated with the vector
(respectively, projective) irreducible representations of the group C3.

3.4.2. Case d power of a prime. Different constructions of MUBs in the case where d is
a power of a prime were achieved by numerous authors from algebraical and geometrical
techniques (see for instance [38, 39, 54–63] and references therein). We want to show here,
through an example for d = 4, how our angular momentum approach can be useful for
addressing this case.

Example 4. Case d = 4. This case corresponds to a spin j = 3/2. Here, we have q = i and
a, α ∈ Z4. Equations (20) and (28) can also be applied to this case. However, the resulting
bases B0, B1, B2, B3 and B4 do not constitute a complete system of MUBs (d = 4 is not a
prime number). Nevertheless, it is possible to find d + 1 = 5 MUBs because d = 22 is the
power of a prime number. This can be achieved by replacing the space E(4) spanned by
{|3/2,m〉 : m = 3/2, 1/2,−1/2,−3/2} by the tensor product space E(2) ⊗ E(2) spanned by
the basis

{α ⊗ α, α ⊗ β, β ⊗ α, β ⊗ β}. (65)

The space E(2) ⊗ E(2) is associated with the coupling of two spin angular momenta j1 = 1/2
and j2 = 1/2 or two qubits (in the vector u⊗v, u and v correspond to j 1 and j 2, respectively).

In addition to the basis (65), it is possible to find other bases of E(2) ⊗ E(2) which are
mutually unbiased. The d = 4 MUBs besides the canonical or computational basis (65) can
be constructed from the eigenvectors

|abαβ〉 := |aα〉 ⊗ |bβ〉 (66)

10
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of the operators

wab := v0a ⊗ v0b (67)

(the vectors |aα〉 and |bβ〉 refer to the two spaces E(2)). As a result, we have the d + 1 = 5
following MUBs, where λ = (1 − i)/2 and μ = iλ.

The canonical basis:

α ⊗ α α ⊗ β β ⊗ α β ⊗ β. (68)

The w00 basis:

|0000〉 = 1
2 (α ⊗ α + α ⊗ β + β ⊗ α + β ⊗ β) (69)

|0001〉 = 1
2 (α ⊗ α − α ⊗ β + β ⊗ α − β ⊗ β) (70)

|0010〉 = 1
2 (α ⊗ α + α ⊗ β − β ⊗ α − β ⊗ β) (71)

|0011〉 = 1
2 (α ⊗ α − α ⊗ β − β ⊗ α + β ⊗ β). (72)

The w11 basis:

|1100〉 = 1
2 (α ⊗ α + iα ⊗ β + iβ ⊗ α − β ⊗ β) (73)

|1101〉 = 1
2 (α ⊗ α − iα ⊗ β + iβ ⊗ α + β ⊗ β) (74)

|1110〉 = 1
2 (α ⊗ α + iα ⊗ β − iβ ⊗ α + β ⊗ β) (75)

|1111〉 = 1
2 (α ⊗ α − iα ⊗ β − iβ ⊗ α − β ⊗ β). (76)

The w01 basis:

λ|0100〉 + μ|0111〉 = 1
2 (α ⊗ α + α ⊗ β − iβ ⊗ α + iβ ⊗ β) (77)

μ|0100〉 + λ|0111〉 = 1
2 (α ⊗ α − α ⊗ β + iβ ⊗ α + iβ ⊗ β) (78)

λ|0101〉 + μ|0110〉 = 1
2 (α ⊗ α − α ⊗ β − iβ ⊗ α − iβ ⊗ β) (79)

μ|0101〉 + λ|0110〉 = 1
2 (α ⊗ α + α ⊗ β + iβ ⊗ α − iβ ⊗ β). (80)

The w10 basis:

λ|1000〉 + μ|1011〉 = 1
2 (α ⊗ α − iα ⊗ β + β ⊗ α + iβ ⊗ β) (81)

μ|1000〉 + λ|1011〉 = 1
2 (α ⊗ α + iα ⊗ β − β ⊗ α + iβ ⊗ β) (82)

λ|1001〉 + μ|1010〉 = 1
2 (α ⊗ α + iα ⊗ β + β ⊗ α − iβ ⊗ β) (83)

μ|1001〉 + λ|1010〉 = 1
2 (α ⊗ α − iα ⊗ β − β ⊗ α − iβ ⊗ β). (84)

It is to be noted that the vectors of the w00 and w11 bases are not intricated (i.e., each
vector is the direct product of two vectors) while the vectors of the w01 and w10 bases are
intricated (i.e., each vector is not the direct product of two vectors). To be more precise, the
degree of intrication of the state vectors for the bases w00, w11, w01 and w10 can be determined
in the following way. In arbitrary dimension d, let

|�〉 =
d−1∑
k=0

d−1∑
l=0

akl|k〉 ⊗ |l〉 (85)

11
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be a double qudit state vector. Then, it can be shown that the determinant of the d × d matrix
A = (akl) satisfies

0 � |det A| � 1√
dd

(86)

as proved in the Albouy thesis [65, 66]. The case det A = 0 corresponds to the absence of
intrication while the case

|det A| = 1√
dd

(87)

corresponds to a maximal intrication. As an illustration, we obtain that all the state vectors
for w00 and w11 are not intricated and that all the state vectors for w01 and w10 are maximally
intricated.

3.4.3. Case d arbitrary. In the special case where u = 1, the generalized Gauss sum
S(1,−d + 2α − 2β, d) can easily be calculated for d arbitrary by means of the reciprocity
theorem [31]

S(u, v,w) =
√∣∣∣w

u

∣∣∣ eiπ[sgn(uw)−v2/(uw)]/4S(−w,−v, u). (88)

This leads to the following particular result.

Result 7. For d arbitrary and b = a � 1, one has

〈aα|a−1β〉 = 1√
d

eiπ[1−(d−2α+2β)2/d]/4 ⇒ |〈aα|a−1β〉| = 1√
d

a−1 := a � 1. (89)

Therefore, the three bases Ba�1, Ba and Bd are mutually unbiased in Cd .

This result is in agreement with a well-known result proved in many papers from quite
distinct ways (see for instance [41]). We thus recover, from an approach based on generalized
Gauss sums, that for d arbitrary the minimum number of MUBs is 3.

Another special case, namely, u = 2 (⇒ d � 3), is worthy of value. The application of
the reciprocity theorem gives here

Result 8. For d � 3 and b = a � 2, one has

〈aα|a−2β〉 = 1√
d

1√
2

eiπ[1−2(α−β)2/d]/4[1 + eiπ(−d+2α−2β)/2]

⇒ |〈aα|a−2β〉| =
√

2

d

∣∣∣cos
[π

4
(d − 2α + 2β)

]∣∣∣ a−2 := a � 2. (90)

Therefore, the bases Ba�2 and Ba cannot be mutually unbiased in Cd for d even with d � 4.
In marked contrast, the bases Ba�2 and Ba are unbiased for d odd with d � 3 (d prime or not
prime).

Going back to the Hadamard matrices, let us remark that, for d arbitrary, if Ba and Bb

are two MUBs associated with the Hadamard matrices Fa and Fb (respectively), then F
†
aFb is

a Hadamard matrix, too. However, for d arbitrary, if Fa and Fb are two Hadamard matrices
associated with the bases Ba and Bb (respectively), the product F

†
aFb is not in general a

Hadamard matrix.

12
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4. Unitary group and generalized Pauli group

4.1. Weyl pairs

We continue with the general case where d is arbitrary. The operator v0a can be expressed as

v0a =
d−1∑
k=0

qka|k � 1〉〈k| ⇔ v0a =
j∑

m=−j

q(j−m)a|j,m ⊕ 1〉〈j,m| (91)

so that

v0a|k〉 = qka|k � 1〉 ⇔ v0a|j,m〉 = q(j−m)a|j,m ⊕ 1〉, (92)

where q = exp(2π i/d). The operators x (the flip or shift operator) and z (the clock operator),
used in quantum information and quantum computation (see for instance [67, 68]), can be
derived from the generic operator v0a as follows:

x := v00 z := (v00)
† v01. (93)

Therefore, we get

x =
d−1∑
k=0

|k � 1〉〈k| = |d − 1〉〈0| + |0〉〈1| + · · · + |d − 2〉〈d − 1| (94)

and

z =
d−1∑
k=0

qk|k〉〈k| = |0〉〈0| + q|1〉〈1| + · · · + qd−1|d − 1〉〈d − 1|. (95)

The action of x and z on the basis Bd of E(d) is given by the ladder relation

x|k〉 = |k � 1〉 ⇔ x|j,m〉 = (1 − δm,j )|j,m + 1〉 + δm,j |j,−j 〉 (96)

and the phase relation

z|k〉 = qk|k〉 ⇔ z|j,m〉 = qj−m|j,m〉. (97)

Alternatively, the action of x and z on any basis Ba (a = 0, 1, . . . , d − 1) of E(d) reads

x|aα〉 = q(d−1)a/2−α|aαa〉 αa := α ⊕ a ⇒ x|0α〉 = q−α|0α〉 (98)

and

z|aα〉 = q−1|aα−1〉 α−1 := α � 1. (99)

Equations (96) and (97), on one side, and equations (98) and (99), on the other side, show that
the flip or clock character for x and z is basis-dependent. The relationship between x and z

can be understood via the following

Result 9. The unitary operators x and z are cyclic and q-commute:

xd = zd = I xz − qzx = 0. (100)

They are connected by

x = f †zf ⇔ z = f xf †, (101)

where the Fourier operator

f := 1√
d

d−1∑
k=0

d−1∑
k′=0

q−kk′ |k〉〈k′| (102)
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is unitary and satisfies

f 4 = 1. (103)

The operators x and z are isospectral operators with the common spectrum {1, q, . . . , qd−1}.

A direct proof of result 9 can be obtained by switching to the matrices

X =
d−1∑
k=0

Ek�1,k =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . .

...

0 0 0 . . . 1
1 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

(104)

Z =
d−1∑
k=0

qkEk,k =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
0 q 0 . . . 0
0 0 q2 . . . 0
...

...
... . . .

...

0 0 0 . . . qd−1

⎞
⎟⎟⎟⎟⎟⎠

(105)

of the operators x and z, in the basis Bd (cf (97) and (98)). Let F be the matrix of the linear
operator f in the basis Bd. The reduction by means of F of the endomorphism associated with
the matrix X yields the matrix Z. In other words, the diagonalization of X can be achieved with
the help of the matrix F via Z = FXF †. Note that the matrix F is connected to F0 by

F = (F0S)† S :=
d−1∑
β=0

qβEβ,d−β, (106)

where S acts as a pseudopermutation.
In view of (100), the pair (x, z) is called a Weyl pair. Weyl pairs were originally

introduced in finite quantum mechanics [69] and used for the construction of unitary bases in
finite-dimensional Hilbert spaces [70]. It should be noted that matrices of types X and Z were
introduced long time ago by Sylvester [71] in order to solve the matrix equation PX = XQ;
in addition, such matrices were used by Morris [72] to define generalized Clifford algebras in
connection with quaternion algebras and division rings. Besides the Weyl pair (x, z), other
pairs can be formed with the operators v0a and z. Indeed, any operator v0a (a ∈ Zd ) can be
generated from x and z since

v0a = xza. (107)

Thus, equation (100) can be generalized as

e−iπ(d−1)a(v0a)
d = zd = I v0az − qzv0a = 0. (108)

Therefore, the pair (v0a, z) is a Weyl pair for (d − 1)a even.

4.2. Generalized Pauli matrices

For d = 2 the q-commutation relation of x and z reduces to an anticommutation relation. In
fact, equation (100) with d = 2 can be particularized to the relations

x2 = z2 = I xz + zx = 0, (109)

14
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which are reminiscent of relations satisfied by the Pauli matrices. Hence, we understand that
the matrices X and Z for d arbitrary can be used as an integrity basis for producing generalized
Pauli matrices [37–39, 54, 55, 57–60, 73–82]. Let us develop this point.

For d arbitrary, we define the operators

uab = xazb a, b ∈ Zd . (110)

The operators uab shall be referred to as generalized Pauli operators and their matrices as
generalized Pauli matrices. They satisfy the ladder-phase relation

uab|k〉 = qkb|k � a〉 ⇔ uab|j,m〉 = q(j−m)b|j,m ⊕ a〉 (111)

from which we can derive the following result.

Result 10. The d2 operators uab, with a, b ∈ Zd , are unitary and obey the multiplication rule

uabua′b′ = q−ba′
ua′′b′′ a′′ := a ⊕ a′ b′′ := b ⊕ b′. (112)

Therefore, the commutator and the anticommutator of uab and ua′b′ are given by

[uab, ua′b′ ]± = (q−ba′ ± q−ab′
)ua′′b′′ a′′ := a ⊕ a′ b′′ := b ⊕ b′. (113)

Furthermore, they are orthogonal with respect to the Hilbert–Schmidt inner product

TrE(d)[(uab)
†ua′b′ ] = d δa,a′ δb,b′ , (114)

where the trace is taken on the d-dimensional space E(d).

As a corollary of result 10, we have

[uab, ua′b′ ]− = 0 ⇔ ab′ � ba′ = 0 (115)

and

[uab, ua′b′ ]+ = 0 ⇔ ab′ � ba′ = 1
2d. (116)

This yields two consequences. First, equation (116) shows that all anticommutators
[uab, ua′b′ ]+ are different from 0 if d is an odd integer. Second, from equation (115) we
have the important result that, for d arbitrary, each of the three disjoint sets

e0• := {u0a = za : a = 1, 2, . . . , d − 1} (117)

e•• := {uaa = xaza : a = 1, 2, . . . , d − 1} (118)

e•0 := {ua0 = xa : a = 1, 2, . . . , d − 1} (119)

consists of d − 1 mutually commuting operators. The three sets e0•, e•• and e•0 are associated
with three MUBs. This is in agreement with the fact that the bases B0, B1 and Bd are three
MUBs for d arbitrary (v00 = x ∈ e•0, v01 = xz ∈ e•• and z ∈ e0• are associated with B0, B1

and Bd, respectively).
By way of illustration, let us give the matrices in the basis Bd of the operators uab for

d = 2, 3 and 4.

Example 5. Case d = 2. For d = 2 ⇔ j = 1/2 (⇒ q = −1), the matrices in the two sets

E0 := {I2 = X0Z0, X = X1Z0 ≡ V00} (120)

E1 := {Z = X0Z1, Y = X1Z1 ≡ V01} (121)

corresponding to the four operators uab are

I2 =
(

1 0
0 1

)
X =

(
0 1
1 0

)
Z =

(
1 0
0 −1

)
Y =

(
0 −1
1 0

)
. (122)
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In terms of the usual (Hermitian and unitary) Pauli matrices σx , σy and σz, we have

X = σx Y = −iσy Z = σz. (123)

The matrices X, Y and Z are thus identical to the Pauli matrices up to a phase factor for Y. This
phase factor is the price one has to pay in order to get a systematic generalization of Pauli
matrices in arbitrary dimension.

Example 6. Case d = 3. For d = 3 ⇔ j = 1 (⇒ q = exp(i2π/3)), the matrices in the
three sets

E0 := {X0Z0, X1Z0 ≡ V00, X
2Z0} (124)

E1 := {X0Z1, X1Z1 ≡ V01, X
2Z1} (125)

E2 := {X0Z2, X1Z2 ≡ V02, X
2Z2} (126)

corresponding to the nine operators uab are

I3 =
⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠ X =

⎛
⎝0 1 0

0 0 1
1 0 0

⎞
⎠ X2 =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠ (127)

Z =
⎛
⎝1 0 0

0 q 0
0 0 q2

⎞
⎠ XZ =

⎛
⎝0 q 0

0 0 q2

1 0 0

⎞
⎠ X2Z =

⎛
⎝0 0 q2

1 0 0
0 q 0

⎞
⎠ (128)

Z2 =
⎛
⎝1 0 0

0 q2 0
0 0 q

⎞
⎠ XZ2 =

⎛
⎝0 q2 0

0 0 q

1 0 0

⎞
⎠ X2Z2 =

⎛
⎝0 0 q

1 0 0
0 q2 0

⎞
⎠ . (129)

These generalized Pauli matrices differ from the Gell-Mann matrices and Okubo matrices used
for SU(3) in particle physics with three flavors of quarks [83–85]. They constitute a natural
extension based on Weyl pairs of the Pauli matrices in dimension d = 3.

Example 7. Case d = 4. For d = 4 ⇔ j = 3/2 (⇒ q = i), the matrices in the four sets

E0 := {X0Z0, X1Z0 ≡ V00, X
2Z0, X3Z0} (130)

E1 := {X0Z1, X1Z1 ≡ V01, X
2Z1, X3Z1} (131)

E2 := {X0Z2, X1Z2 ≡ V02, X
2Z2, X3Z2} (132)

E3 := {X0Z3, X1Z3 ≡ V03, X
2Z3, X3Z3} (133)

corresponding to the 16 operators uab are

I4 =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠ X =

⎛
⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎞
⎟⎟⎠ (134)

X2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ X3 =

⎛
⎜⎜⎝

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠ (135)
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Z =

⎛
⎜⎜⎝

1 0 0 0
0 i 0 0
0 0 −1 0
1 0 0 −i

⎞
⎟⎟⎠ XZ =

⎛
⎜⎜⎝

0 i 0 0
0 0 −1 0
0 0 0 −i
1 0 0 0

⎞
⎟⎟⎠ (136)

X2Z =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 −i
1 0 0 0
0 i 1 0

⎞
⎟⎟⎠ X3Z =

⎛
⎜⎜⎝

0 0 0 −i
1 0 0 0
0 i 0 0
0 0 −1 0

⎞
⎟⎟⎠ (137)

Z2 =

⎛
⎜⎜⎝

1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠ XZ2 =

⎛
⎜⎜⎝

0 −1 0 0
0 0 1 0
0 0 0 −1
1 0 0 0

⎞
⎟⎟⎠ (138)

X2Z2 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ X3Z2 =

⎛
⎜⎜⎝

0 0 0 −1
1 0 0 0
0 −1 0 0
0 0 1 0

⎞
⎟⎟⎠ (139)

Z3 =

⎛
⎜⎜⎝

1 0 0 0
0 −i 0 0
0 0 −1 0
0 0 0 i

⎞
⎟⎟⎠ XZ3 =

⎛
⎜⎜⎝

0 −i 0 0
0 0 −1 0
0 0 0 i
1 0 0 0

⎞
⎟⎟⎠ (140)

X2Z3 =

⎛
⎜⎜⎝

0 0 −1 0
0 0 0 i
1 0 0 0
0 −i 0 0

⎞
⎟⎟⎠ X3Z3 =

⎛
⎜⎜⎝

0 0 0 i
1 0 0 0
0 −i 0 0
0 0 −1 0

⎞
⎟⎟⎠ . (141)

These generalized Pauli matrices are linear combinations of the generators of the chain
SU(4) ⊃ SU(3) ⊃ SU(2) used in particle physics with four flavors of quarks [86–88].

For d arbitrary, the generalized Pauli matrices arising from (110) are different from
the generalized Gell-Mann λ matrices introduced in [89]. The generalized λ matrices are
Hermitian and adapted to the chain of groups SU(d) ⊃ SU(d − 1) ⊃ · · · ⊃ SU(2) while the
matrices XaZb are unitary and closely connected to cyclic symmetry. Indeed, for d arbitrary,
each of the d sets

Eb := {XaZb : a = 0, 1, . . . , d − 1} b = 0, 1, . . . , d − 1 (142)

is associated with an irreducible representation of the cyclic group Cd. More precisely, the
one-dimensional irreducible representation of Cd associated with Eb is obtained by listing the
nonzero matrix elements of any matrix of Eb, column by column from left to right. In this way,
we obtain the d irreducible representations of Cd. This relationship between d-dimensional
Pauli matrices and irreducible representations of Cd is clearly emphasized by the examples
given above for d = 2, 3 and 4.

4.3. Pauli basis for the unitary group

Two consequences follow from (114). (i) The Hilbert–Schmidt relation (114) in the Hilbert
space Cd2

shows that the d2 operators uab are pairwise orthogonal operators. Thus, they
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can serve as a basis for developing any operator acting on E(d). (ii) The commutator
in (113) defines the Lie bracket of a d2-dimensional Lie algebra generated by the set
{uab : a, b = 0, 1, . . . , d − 1}. This algebra can be identified to the Lie algebra u(d) of
the unitary group U(d). The subset {uab : a, b = 0, 1, . . . , d − 1}\{u00} then spans the Lie
algebra su(d) of the special unitary group SU(d). In other words, the Weyl pair (X,Z),
consisting of the generalized Pauli matrices X and Z in dimension d, form an integrity basis
for u(d). More specifically, the two following results hold.

Result 11. The set {XaZb : a, b = 0, 1, . . . , d − 1} forms a basis for the Lie algebra u(d) of
the unitary group U(d). The Lie brackets of u(d) in such a basis (denoted as the Pauli basis)
are

[XaZb,XeZf ]− =
d−1∑
i=0

d−1∑
j=0

(ab, ef ; ij)XiZj (143)

with the structure constants

(ab, ef ; ij) = δ(i, a ⊕ e)δ(j, b ⊕ f )(q−be − q−af ), (144)

where a, b, e, f, i, j ∈ Zd . The structure constants (ab, ef ; ij) with i = a ⊕ e and j = b⊕f

are cyclotomic polynomials associated with d. They vanish for af � be = 0.

Result 12. For d = p, with p a prime integer, the Lie algebra su(p) of the special unitary
group SU(p) can be decomposed into a direct sum of p + 1 Abelian subalgebras of dimension
p − 1, i.e.

su(p) � v0 	 v1 	 · · · 	 vp, (145)

where each of the p + 1 subalgebras v0, v1, . . . , vp is a Cartan subalgebra generated by a set
of p − 1 commuting matrices. The various sets are

V0 := {X0Z1, X0Z2, X0Z3, . . . , X0Zp−2, X0Zp−1} (146)

V1 := {X1Z0, X2Z0, X3Z0, . . . , Xp−2Z0, Xp−1Z0} (147)

V2 := {X1Z1, X2Z2, X3Z3, . . . , Xp−2Zp−2, Xp−1Zp−1} (148)

V3 := {X1Z2, X2Z4, X3Z6, . . . , Xp−2Zp−4, Xp−1Zp−2} (149)

... (150)

Vp−1 := {X1Zp−2, X2Zp−4, X3Zp−6, . . . , Xp−2Z4, Xp−1Z2} (151)

Vp := {X1Zp−1, X2Zp−2, X3Zp−3, . . . , Xp−2Z2, Xp−1Z1} (152)

for v0, v1, . . . , vp, respectively.

Example 8. p = 7 ⇔ j = 3. Equations (146)–(152) give

V0 = {(01), (02), (03), (04), (05), (06)} (153)

V1 = {(10), (20), (30), (40), (50), (60)} (154)

V2 = {(11), (22), (33), (44), (55), (66)} (155)

V3 = {(12), (24), (36), (41), (53), (65)} (156)

V4 = {(13), (26), (32), (45), (51), (64)} (157)
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V5 = {(14), (21), (35), (42), (56), (63)} (158)

V6 = {(15), (23), (31), (46), (54), (62)} (159)

V7 = {(16), (25), (34), (43), (52), (61)}, (160)

where (ab) is used as an abbreviation of XaZb.

Result 12 can be extended to the case where d = pe with p being a prime integer and e
being a positive integer: there exists a decomposition of su(pe) into pe +1 Abelian subalgebras
of dimension pe − 1. In order to make this point clear, we start with a counterexample.

Counterexample. d = 4 ⇔ j = 3/2 (⇒ a, b = 0, 1, 2, 3). In this case, result 11 is valid
but result 12 does not apply. Indeed, the 16 unitary operators uab corresponding to

ab = 01, 02, 03, 10, 20, 30, 11, 22, 33, 12, 13, 21, 23, 31, 32, 00 (161)

are linearly independent and span the Lie algebra of U(4) but they give only three disjoint
sets, namely, {(01), (02), (03)}, {(10), (20), (30)} and {(11), (22), (33)}, containing each of
the three commuting operators, where here again (ab) stands for XaZb. However, it is not
possible to partition the set (161) in order to get a decomposition similar to (145). Nevertheless,
it is possible to find another basis of u(4) which can be partitioned in a way yielding a
decomposition similar to (145). This can be achieved by working with tensorial products
of the matrices XaZb corresponding to p = 2. In this respect, let us consider the product
ua1b1 ⊗ ua2b2 , where uaibi

with i = 1, 2 are Pauli operators for p = 2. Then, by using the
abbreviation (a1b1a2b2) for ua1b1 ⊗ ua2b2 or Xa1Zb1 ⊗ Xa2Zb2 , it can be checked that the five
disjoint sets

{(1011), (1101), (0110)} (162)

{(1110), (1001), (0111)} (163)

{(1010), (1000), (0010)} (164)

{(1111), (1100), (0011)} (165)

{(0101), (0100), (0001)} (166)

consist each of the three commuting unitary operators and that the Lie algebra su(4) is spanned
by the union of the five sets. It is to be emphasized that the 15 operators (162)–(166) are
underlaid by the geometry of the generalized quadrangle of order 2 [90]. In this geometry, the
five sets given by (162)–(166) correspond to a spread of this quadrangle, i.e., to a set of five
pairwise skew lines [90].

The considerations of the counterexample can be generalized to d := d1d2 . . . de, e being
an integer greater than or equal to 2. Let us define

uAB := ua1b1 ⊗ ua2b2 ⊗ · · · ⊗ uaebe
A := a1, a2, . . . , ae B := b1, b2, . . . , be,

(167)

where ua1b1 , ua2b2 , . . . , uaebe
are generalized Pauli operators corresponding to the dimensions

d1, d2, . . . , de respectively. In addition, let q1, q2, . . . , qe be the q-factor associated with
d1, d2, . . . , de respectively (qj := exp(2π i/dj )). Then, results 10, 11 and 12 can be
generalized as follows.
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Result 13. The operators uAB are unitary and satisfy the orthogonality relation

TrE(d1d2...de)[(uAB)†uA′B ′ ] = d1d2 . . . de δA,A′ δB,B ′ , (168)

where

δA,A′ := δa1,a
′
1
δa2,a

′
2
. . . δae,a′

e
δB,B ′ := δb1,b

′
1
δb2,b

′
2
. . . δbe,b′

e
. (169)

The commutator [uAB, uA′B ′]− and the anti-commutator [uAB, uA′B ′]+ of uAB and uA′B ′ are
given by

[uAB, uA′B ′]∓ =
⎛
⎝ e∏

j=1

q
−bj a

′
j

j ∓
e∏

j=1

q
−aj b

′
j

j

⎞
⎠ uA′′B ′′ (170)

with

A′′ := a1 ⊕ a′
1, a2 ⊕ a′

2, . . . , ae ⊕ a′
e B ′′ := b1 ⊕ b′

1, b2 ⊕ b′
2, . . . , be ⊕ b′

e. (171)

The set {uAB : A,B ∈ Zd1 ⊗ Zd2 ⊗ · · · ⊗ Zde
} of the d2

1d2
2 . . . d2

e unitary operators uAB form a
basis for the Lie algebra u(d1d2 . . . de) of the group U(d1d2 . . . de).

The operators uAB may be called generalized Dirac operators since the ordinary Dirac
operators correspond to specific ua1b1 ⊗ ua2b2 for d1 = d2 = 2.

In the special case where d1 = d2 = · · · = de = p with p being a prime integer (or
equivalently d = pe), we have [uAB, uA′B ′ ]− = 0 if and only if

e∑
j=1

ajb
′
j � bja

′
j = 0 (172)

and [uAB, uA′B ′]+ = 0 if and only if
e∑

j=1

ajb
′
j � bja

′
j = 1

2
p (173)

so that there are vanishing anticommutators only if p = 2. The commutation relations given
by (170) and (171) can be transcribed in terms of Lagrangian submodules [65, 91]. For
d = pe, there exists a decomposition of the set {uAB : A,B ∈ Z⊗e

p }\{I } that corresponds to a
decomposition of the Lie algebra su(pe) into pe + 1 Abelian subalgebras of dimension pe − 1
[25, 74, 92–95].

4.4. Generalized Pauli group

Let us define the d3 operators

wabc := qaxbzc = qaubc a, b, c ∈ Zd . (174)

The action of wabc on the Hilbert space E(d) is described by

wabc|k〉 = qa+kc|k � b〉 ⇔ wabc|j,m〉 = qa+(j−m)c|j,m ⊕ b〉. (175)

The operators wabc are unitary and satisfy

TrE(d)[(wabc)
†wa′b′c′ ] = qa′−a d δb,b′ δc,c′ (176)

which gives back (114) for a = a′ = 0.
The product of the operators wabc and wa′b′c′ reads

wabcwa′b′c′ = wa′′b′′c′′ a′′ := a ⊕ a′ � cb′ b′′ := b ⊕ b′ c′′ := c ⊕ c′. (177)
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The set {wabc : a, b, c ∈ Zd} can be endowed with a group structure. In detail, we have the
following.

Result 14. The set {wabc : a, b, c ∈ Zd}, endowed with the internal law (177), is a finite
group of order d3. This non-Abelian group, noted �d and called generalized Pauli group in
d dimensions, is nilpotent (hence solvable) with a nilpotency class equal to 2. The group �d

is isomorphic to a subgroup of U(d) for d even or SU(d) for d odd. It has d(d + 1) − 1
conjugacy classes (d classes containing each 1 element and d2 − 1 classes containing each d
elements) and d(d + 1) − 1 classes of irreducible representations (d2 classes of dimension 1
and d − 1 classes of dimension d).

A faithful three-dimensional representation of �d is provided with the application

�d → GL(3, Zd) : wabc �→
⎛
⎝1 0 0

b 1 0
a −c 1

⎞
⎠ . (178)

This is reminiscent of the Heisenberg–Weyl group [96–101]. Indeed, the group �d can be
considered as a discretization HW(Zd) of the Heisenberg–Weyl group HW(R), a three-
parameter Lie group. The Heisenberg–Weyl group HW(R), also called the Heisenberg group
or Weyl group, is at the root of quantum mechanics. It also plays an important role in
symplectic geometry. The group �d was discussed by Šťovı́ček and Tolar [102] in connection
with quantum mechanics in a discrete spacetime, by Balian and Itzykson [73] in connection
with finite quantum mechanics, by Patera and Zassenhaus [74] in connection with gradings
of simple Lie algebras of type An−1, and by Kibler [25] in connection with Weyl pairs and
the Heisenberg–Weyl group. Note that the discrete version HW(Z) of HW(R) was used
for an analysis of the solutions of the Markoff equation [103]. Recently, the discrete version
HW [Zp × (Qp/Zp)] has been introduced for describing (p-adic) quantum systems with
positions in Zp and momenta in Qp/Zp [104].

As far as HW(Zd) is concerned, it is to be observed that a Lie algebra πd can be associated
with the finite group �d . This can be seen by considering the Frobenius algebra of �d (see
[105] for the definition of the Lie algebra associated with an arbitrary finite group). Then, the
Lie brackets of πd are

[wabc, wa′b′c′]− = wαβγ − wα′β ′γ ′ (179)

with
α := a ⊕ a′ � cb′ β := b ⊕ b′ γ := c ⊕ c′

α′ := α ⊕ cb′ � bc′ β ′ := β γ ′ := γ.
(180)

The algebra πd , of dimension d3, is not semi-simple. It can be decomposed as the direct sum

πd �
d2⊎
1

u(1)

d−1⊎
1

u(d), (181)

which contains d2 Lie algebras isomorphic to u(1) and d − 1 Lie algebras isomorphic to u(d).
The Lie algebra u(d) spanned by the set {uab : a, b ∈ Zd} is one of the subalgebras of πd .

The group �d (noted Pd in [25]) should not be confused with the Pauli group Pn on n
qubits spanned by n-fold tensor products of iσ0 ≡ iI2, σx and σz used in quantum information
and quantum computation [106, 107]. The Pauli group Pn has 4n+1 elements. It is used as an
error group in quantum computing. The normalizer of Pn in SU(2n), known as the Clifford (or
Jacobi) group Clin on n qubits, a group of order 2n2+2n+3 ∏n

j=1(4
j − 1), is of great interest in

the context of quantum corrector codes [41, 108–113]. In addition to Clin, proper subgroups
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of Clin having Pn as an invariant subgroup are relevant for displaying quantum coherence
[114]. The distinction between Pn and �d can be clarified by the example below which shows
that �2 is not isomorphic to P1. In a parallel way, it can be proved that the groups �4 and P2

(both of order 64) are distinct.

Example 9. d = 2. The simplest example of �d occurs for d = 2. The group �2

has eight elements (±I , ±x, ±y := ±xz, ±z) and is isomorphic to the dihedral group D4.
It can be partitioned into five conjugation classes ({I }, {−I }, {x,−x}, {y,−y}, {z,−z}) and
possesses five inequivalent irreducible representations (of dimensions 1, 1, 1, 1 and 2). The
two-dimensional irreducible representation corresponds to

±I �→ ±σ0 ±x �→ ±σx ±y �→ ∓iσy ±z �→ ±σz (182)

in terms of the Pauli matrices σλ with λ = 0, x, y, z. The elements e1 := x, e2 := y

and e3 := z of �2 span the four-dimensional algebra A(1,−1, 0) ≡ N1, the algebra of
hyperbolic quaternions (with e2

1 = −e2
2 = e2

3 = 1 instead of e2
1 = e2

2 = e2
3 = −1 as for usual

quaternions). This associative and noncommutative algebra is a singular division algebra. The
algebra N1 turns out to be a particular Cayley–Dickson algebra A(c1, c2, c3) [115]. Going
back to �2, we see that not all the subgroups of �2 are invariant. The group �2 is isomorphic
to the group of hyperbolic quaternions rather than to the group Q of ordinary quaternions
for which all subgroups are invariant (the group Q can be realized with the help of the
matrices ±σ0, ±iσx , ±iσy , ±iσz). Like Q, the group �2 is ambivalent and simply reducible
in the terminology of Wigner [2]. Indeed, �2 is the sole generalized Pauli group that is
ambivalent.

To end up with this example, let us examine the connection between �2 and the 1 qubit
Pauli group P1. The group P1 has 16 elements (±σλ,±iσλ with λ = 0, x, y, z). Obviously,
�2 is a subgroup of index 2 (necessarily invariant) of P1. The group P1 can be considered as
a double group of �2 or Q in the sense that P1 coincides with �2

⋃
i�2 ≡ Q

⋃
iQ in terms

of sets. Therefore, the group table of P1 easily follows from that of �2 or Q. As a result,
the numbers of conjugation classes and irreducible representation classes are doubled when
passing from �2 or Q to P1.

5. Closing remarks

Starting from a nonstandard approach to angular momentum and its transcription in terms of
representation of SU(2), we derived (in an original and unified way) some results about unitary
operator bases and their connection to unitary groups, Pauli groups and quadratic sums. These
results (either known or formulated in a new way) shed some light on the importance of the
polar decomposition of su(2) and cyclic groups for the study of unitary operator bases and their
relationship with unitary groups and Pauli groups. In particular, the latter decomposition and
the quadratic discrete Fourier transform introduced in this work make it possible to generate
in prime dimension a complete set of MUBs given by a single formula (equation (20)). From
the point of view of the representation theory, it would be interesting to find realization on the
state vectors (20) on the sphere S2 thus establishing a contact between the {j 2, v0a} scheme
and special functions.

To close this review, let us mention two works dealing with à la Schwinger unitary
operator bases in an angular momentum scheme. In [116], unitary operator bases and standard
(discrete) quantum Fourier transforms in an angular momentum framework proved to be useful
for spin tunneling. In addition, d-dimensional generalized Pauli matrices applied to modified
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Bessel functions were considered in an angular momentum approach with j = (d−1)/2 → ∞
[117].

Appendix A. A polar decomposition of su(2)

In addition to the operator vra, a second linear operator is necessary to define a polar
decomposition of SU(2). Let us introduce the Hermitian operator h through

h :=
j∑

m=−j

√
(j + m)(j − m + 1)|j,m〉〈j,m|. (A.1)

Then, it is a simple matter of calculation to show that the three operators

j+ := hvra j− := (vra)
†h jz := 1

2 [h2 − (vra)
†h2vra] (A.2)

satisfy the ladder equations

j+|j,m〉 = q+(j−m+s−1/2)a
√

(j − m)(j + m + 1)|j,m + 1〉 (A.3)

j−|j,m〉 = q−(j−m+s+1/2)a
√

(j + m)(j − m + 1)|j,m − 1〉 (A.4)

and the eigenvalue equation

jz|j,m〉 = m|j,m〉, (A.5)

where s = 1/2. Therefore, the operators j+, j− and jz satisfy the commutation relations

[jz, j+]− = +j+ [jz, j−]− = −j− [j+, j−]− = 2jz (A.6)

and thus span the Lie algebra of SU(2).
The latter result does not depend on the parameters r and a. However, the action of j+

and j− on |j,m〉 on the space E(2j + 1) depends on a; the usual Condon and Shortley phase
convention used in spectroscopy corresponds to a = 0. The writing of the ladder operators
j+ and j− in terms of h and vra constitutes a two-parameter polar decomposition of the Lie
algebra of SU(2). This decomposition is an alternative to the polar decompositions obtained
independently in [24, 118–121].

Appendix B. A quon approach to su(2)

Following [122], we define a quon algebra or q-deformed oscillator algebra for q a root of
unity. The three operators a−, a+ and Na such that

a−a+ − qa+a− = I [Na, a±]− = ±a± (a±)k = 0 N †
a = Na (B.1)

where

q := exp

(
2π i

k

)
k ∈ N\{0, 1} (B.2)

define a quon algebra or q-deformed oscillator algebra denoted as Aq(a−, a+, Na). The
operators a− and a+ are referred to as quon operators. The operators a−, a+ and Na are called
annihilation, creation and number operators, respectively.

Let us consider two commuting quon algebras Aq(a−, a+, Na) ≡ Aq(a) with a = x, y

corresponding to the same value of the deformation parameter q. Their generators satisfy
equations (B.1) and (B.2) with a = x, y and [X, Y ]− = 0 for any X in Aq(x) and
any Y in Aq(y). Then, let us look for Hilbertian representations of Aq(x) and Aq(y)
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on the k-dimensional Hilbert spaces F(x) and F(y) spanned by the orthonormal bases
{|n1) : n1 = 0, 1, . . . , k − 1} and {|n2) : n2 = 0, 1, . . . , k − 1}, respectively. We easily
obtain the representations defined by

x+|n1) = |n1 + 1) x+|k − 1) = 0

x−|n1) = [n1]q |n1 − 1) x−|0) = 0

Nx |n1) = n1|n1)

(B.3)

and

y+|n2) = [n2 + 1]q |n2 + 1) y+|k − 1) = 0

y−|n2) = |n2 − 1) y−|0) = 0

Ny |n2) = n2|n2)

(B.4)

for Aq(x) and Aq(y), respectively.
The cornerstone of this approach is to define the two linear operators

h := √
Nx(Ny + 1) vra := sxsy (B.5)

with

sx := qa(Nx+Ny)/2x+ + eiφr/2 1

[k − 1]q!
(x−)k−1 (B.6)

sy := y−q−a(Nx−Ny)/2 + eiφr/2 1

[k − 1]q!
(y+)

k−1, (B.7)

where

a ∈ R φr = π(k − 1)r r ∈ R. (B.8)

The operators h and vra act on the states

|n1, n2) := |n1) ⊗ |n2) (B.9)

of the k2-dimensional space Fk := F(x) ⊗ F(y). It is immediate to show that the action of h
and vra on Fk is given by

h|n1, n2) =
√

n1(n2 + 1)|n1, n2) ni = 0, 1, 2, . . . , k − 1 i = 1, 2 (B.10)

and

vra|n1, n2) = qan2 |n1 + 1, n2 − 1) n1 �= k − 1 n2 �= 0 (B.11)

vra|k − 1, n2) = eiφr/2q−a(k−1−n2)/2|0, n2 − 1) n2 �= 0 (B.12)

vra|n1, 0) = eiφr/2qa(k+n1)/2|n1 + 1, k − 1) n1 �= k − 1 (B.13)

vra|k − 1, 0) = eiφr |0, k − 1). (B.14)

The operators h and vra satisfy interesting properties: the operator h is Hermitian and the
operator vra is unitary.

We now adapt the trick used by Schwinger [123] in his approach to angular momentum
via a coupled pair of harmonic oscillators. This can be done by introducing two new quantum
numbers J and M defined by

J := 1
2 (n1 + n2) M := 1

2 (n1 − n2) ⇒ |JM〉 := |J + M,J − M) = |n1, n2). (B.15)

Note that

j := 1
2 (k − 1) (B.16)
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is an admissible value for J. Then, let us consider the k-dimensional subspace ε(j) of the
k2-dimensional space F(x) ⊗ F(y) spanned by the basis {|j,m〉 : m = j, j − 1, . . . ,−j}.
We guess that ε(j) is a space of constant angular momentum j . As a matter of fact, we can
check that ε(j) is stable under h and vra. In fact, the action of the operators h and vra on the
subspace ε(j) of Fk can be described by

h|j,m〉 =
√

(j + m)(j − m + 1)|j,m〉 (B.17)

and

vra|j,m〉 = δm,j ei2πjr |j,−j 〉 + (1 − δm,j )q
(j−m)a|j,m + 1〉 (B.18)

in agreement with equation (A.1) and with the master equation (6).
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Kibler M and Gâcon J C 1989 Croat. Chem. Acta 62 783

[19] Moret-Bailly J 1965 J. Mol. Spectrosc. 15 344
[20] Kibler M 1968 J. Mol. Spectrosc. 26 111

Kibler M 1969 C. R. Acad. Sci., Paris B 268 1221
[21] Patera J and Winternitz P 1973 J. Math. Phys. 14 1130

Patera J and Winternitz P 1976 J. Chem. Phys. 65 2725
[22] Michel L 1977 Invariants polynomiaux des groupes de symétrie moléculaire et cristallographique Group
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[26] Diţă P 2005 J. Phys. A: Math. Gen. 37 5355
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